翻訳と辞書
Words near each other
・ Imre Taussig
・ Imre Taveter
・ Imre Thurzó
・ Imre Thököly
・ Imre Tiidemann
・ Imre Tiitsu
・ Imre Trencsényi-Waldapfel
・ Imre Tóth
・ Imre Ungár
・ Imre Vagyóczki
・ Imre Vallyon
・ Imre Varadi
・ Imre Varga
・ Imre Vas
・ Imre Vejkey
Imre Z. Ruzsa
・ Imre Zachár
・ Imre Zichy
・ Imre Ágoston
・ Imre Ámos
・ Imreffy family
・ Imrehegy
・ Imrei Binah
・ Imreish
・ Imrekov
・ Imri Ganiel
・ Imrich Barta
・ Imrich Bugár
・ Imrich Chlamtac
・ Imrich Karvaš


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Imre Z. Ruzsa : ウィキペディア英語版
Imre Z. Ruzsa

Imre Z. Ruzsa (born 23 July 1953) is a Hungarian mathematician specializing in number theory.
Ruzsa participated in the International Mathematical Olympiad for Hungary, winning a silver medal in 1969, and two consecutive gold medals with perfect scores in 1970 and 1971. He graduated from the Eötvös Loránd University in 1976. Since then he has been at the Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences. He was awarded the Rollo Davidson Prize in 1988. He was elected corresponding member (1998) and member (2004) of the Hungarian Academy of Sciences. He was invited speaker at the European Congress of Mathematics at Stockholm, 2004, and in the Combinatorics section of the International Congress of Mathematicians in Madrid, 2006. In 2012 he became a fellow of the American Mathematical Society.〔(List of Fellows of the American Mathematical Society ), retrieved 2013-07-07.〕
With Endre Szemerédi he proved that on ''n'' points only o(''n''2) triples can be given such that the union of any 3 of them contains at least 7 points. He proved that an essential component has at least (log ''x'')1+ε elements up to ''x'', for some ε > 0. On the other hand, for every ε > 0 there is an essential component that has at most (log ''x'')1+ε elements up to ''x'', for every ''x''. He gave a new proof to Freiman's theorem. Ruzsa also showed the existence of a Sidon sequence which has at least ''x''0.41 elements up to ''x''.
In a result complementing the Erdős–Fuchs theorem he showed that there exists a sequence ''a''0, ''a''1, ... of natural numbers such that for every ''n'' the number of solutions of the inequality ''a''''i'' + ''a''''j'' ≤ ''n'' is ''cn'' + ''O''(''n''1/4log ''n'') for some ''c'' > 0.
==Selected publications==

*
*
*
*
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Imre Z. Ruzsa」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.